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S U M M A R Y  
The integral of the form I~ exp [ - P r  ~o f(O d~] dtl, which arises in the convective heat transfer with constant wall 
temperature, is integrated by using Gauss-Laguerre and Gat}ss-Legendre Quadrature formulae. It is shown that the 
Nusselt number can be expressed explicitly in terms of the Prandtl number and the method proposed in this paper is 
valid for wide range of Prandtl numbers. Examples are given for the cases of flow over a semi-infinite plate and two- 
dimensional and axisymmetrical stagnations. The results are compared with the exact solutions for Prandtl numbers 
ranging from 0.006 to 100 (flat plate) and 0.01 to 50 (two-dimensional and axisymmetrical stagnation flows). 

1. Introduction 

The theory of boundary layers and convective heat transfer in boundary layers has grown 
considerably since Prandtl introduced the concept of boundary layers in 1904. However, there 
was not a general method of solution for the velocity boundary-layer, and hence for the thermal 
boundary-layer equations, because the velocity field is a base for obtaining temperature field. 
There are several exact and approximate methods known in the literature [1, 2] for the cal- 
culation of both the wall friction and the heat transfer. 

The exact solution method for the convective heat transfer problems is usually to find a 
coordinate transformation to transform momentum and energy equations to ordinary or 
partial differential equations and then simultaneously solve by numerical procedure. The 
presently existing numerical procedure is laborious and it can only be used for a given Prandtl 
number; it results in empirical laws which have no physical foundation. In order to avoid the 
lengthy exact calculations, several approximate methods have been developed. One of the 
best known approximate methods is that of Karman-Pohlhausen. Generally, this method 
is still troublesome and its accuracy is disappointing especially when applied to the heat 
transfer problems. Merk [3] and Meksyn [4] developed an asymptotic method which is 
capable of expressing the Nusselt number explicitly in terms of a negative power of Prandtl 
number in series form. For small value of Prandtl number (Pr), the series may become divergent 
and Euler's procedure for the evaluation of the series may be used, however, the result is not 
satisfactory when Pr< 0.1. 

In this paper, a rapid method of calculating the convective heat transfer by means of Gaussian 
quadrature formulae is proposed. In what follows, we limit the consideration to the case of a 
steady, laminar incompressible flow with constant properties and negligible dissipation. 
Furthermore, the free stream and wall temperatures are assumed to be constant. Under such 
conditions, in many cases of convective heat transfer, the problem is reduced to the evaluation 
of an integral 

where ~ is a dummy variable and f(t/) is a solution of the transformed momentum equation 
concerned. Let's consider a specific problem, for example, the heat transfer from a two- 
dimensional or axisymmetrical body immersed in a laminar, incompressible stream. For these 
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cases we may introduce the coordinates (x, y), x being the distance from the forward stagnation 
point measured along the circumference of the two-dimensional profile or median line of the 
axisymmetrical body, and y being the normal distance from the wall of the body. The velocity 
components in x- and y-directions are denoted by u and v. For axisymmetrical bodies, we 
also introduce r, the distance from a surface element of the body to the axis of symmetry. 

If one introduces: 
the coordinate transformation: 

{" f .  V, d 

' I -5 y (2v oo Ve y, (2) 

the stream function: .'" 

0 = (2~Uoo v)~f(~, rl) (3a) 

such that 

u =  \ r /  @ '  v = - , r /  ~ x '  (3b) 

the dimensionless temperature: 

0 - T -  r~ (4) 
rw-r  

with i= 0, 1, respectively, for two-dimensional and axisymmetrical flows, L the characteristic 
length, U e the velocity at the edge of the boundary layer, Uoo free stream velocity, v the kinematic 
viscosity, Too and Tw respectively, the free stream and wall temperatures into the momentum 
and energy equations and further apply the Meksyn's wedge approximation (zeroth order 
solution for the transformed momentum and energy equations) originally proposed by Merk 
[4], the local Nusselt number may be written by 

Nur k(T~-Too) Uoo x/2 [-O'o(O)]" Re~_ - - .  (5) 

where Reynolds number Rer = Uoo ~/v. 
The quantity, - 0' (o), is the negative dimensionless temperature gradient at the wall and is 

defined by 

-0'(o) : I i ~ exp ( -  Pr f of(~'d~)dtl']-' (6, 

in which f satisfies 

f '" +ff"+ fi(1 _f,2) = 0 (7) 

with boundary conditions 

f = f ' - -  0 t/= 0 and f ' =  1 r /~oo.  (8) 

In the above, the primes designate derivatives with respect to t/while f is a function of t/only 
and fl is the "wedge variable" defined by 

2~ dU e 
f l -  U e d~ " (9) 

The derivation of (5), (6) and (7) may be found in refs. [I, 3, 4] and will not be repeated here. 
For a flow past a wedge, the velocity at the edge of the boundary layer is given by Ue (x) = Cx m, 
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where C and m are constants. Under this condition, fi becomes a constant and (6) and (7) 
yield exact results. Equation (7) has been solved by Howarth [5] for fl = 0, Hiemenz [6] for 
fl= 1, Fr6ssling [7] for fl=�89 and by Hartree [8] for fl ranging from -0.198 to 2.4. Their results 
are summarized in refs. [1, 2]. The value off(q) together withf '  andf"  * is given by a table of 
numerical values whichf  f '  a n d f "  assume for a discrete set of their arguments. Equation (6) 
has been calculated numerically by Eckert [93, Pohlhausen [10] for some specified value of 
fl and Pr. Asymptotic expansion of (6) was derived by Merk [3] using the method of steepest 
descent. In this paper, an entirely new approximate solution method is developed for the nu- 
merical integration of (6) by means of Gaussian quadrature formulae. ~l'he method is simple 
and the numerical calculation is rapid and yet the method will provide the highest accuracy 
possible. 

2. Analysis 

Gaussian Quadrature 
In the convective heat transfer with constant wall temperature, we are primarily interested in 
evaluating the surface heat flux. Thus, the quantities desired are of equation (6) and the question 
as to the best quadrature formula for the numerical evaluation of the integral of the form 
S~ ~(q)d7 is therefore of considerable practical interest. In this section, we like to discuss how 
we can develop the quadrature for such a purpose. 

Let's consider quite generally the integral 

fl W(7)cb(7)d7 (10) 

between two assigned limits a and b of a continuous function 4~(7) weighted by some known 
function W (7)- Suppose that 4~ (7) stands for a more general type of a function whose primitive 
function may not be easily ascertained by the method of formal analysis and under such 
circumstances analytical integration of (10) proves of little hope; moreover, in the convective 
heat transfer, ~ (7) is not known in its analytical form but merely specified by a table of nu- 
merical values at a discrete set of its arguments of 7's, and the indefinite integral methods 
become altogether inapplicable. However, the integration of (10) may be approximately 
achieved by numerical quadrature formulae. 

According to the Weierstrass' theorem on polynomial approximation, any arbitrary 
continuous function defined in a finite interval a < 7 < b can be approximated over the whole 
interval (a, b) to any accuracy by a polynomial of sufficiently high degree [11]. Let's now inter- 
polate the function @(7) which appears in the integral (10) by a polynomial of (2n-  1) degree 
and the remainder term, if 4~ (7) is of a degree higher than (2n - 1). Using Hermite's interpolation 
formula for polynomial, we write 

~b(7) = ~ hj(7)~b(r/j) + ~, Oj(7)~(1)(7j) + (2n)-~-[P.(7)]2 (lla)** 
j=~  j = l  �9 

where pc2) , 
" v u ~ / F l  t-Vl 2 (llb) 

(7 )J 
gj (7) = (7 - 7j) [lj (7)3 2 (1 l c) 

e.(7) (11d) 
I (7) -- (7-  7j) P,P(.j) 

P. (7) is a polynomial of degree n abbreviated by 

�9 Only for fl = 0, fl =�89 and fl = 1. For other values of r, Hartree gave only the value f '( t /)  and f"(0) .  However, f(t/) 
and f"(t/) may be calculated by Taylor's series. 
�9 * The superscript in the parenthesis denotes order of the derivative. 
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and 

P.(~/) = f i  (q-r//) (lle) 
j = l  

(dP"t -- [ l  (r/j-r/i). (110 
Pn(l)(r/J) = \ dr/-~/ ~=nj led 

In the above, the ~/fs denote n discrete abscissae at which the polynomial will take the same 
value of r and ~(1)(r/) as �9 does. 

When ~(r/) is a polynomial of degree (2n -  1) or less, qs(2")(t/)=0 and the remainder term on 
the right-hand side of equation (1 la) vanishes. The value 2 appearing in the remainder term 
denotes some value of the variable within the interval a < )~ < b and will, however, vary with r/. 
Actually, 2 is merely defined in such a way that to every value of an interpolated r/, there cor- 
responds at least one value of 2 such that a <  t/< b, which renders equation (lla) exact. It 
should be kept in mind that we are, of course, unable to determine the actual values of ~(2,) (2) 
since the function r is unknown. 

To evaluate the numerical integral of (10), we substitute (11) into (10) and obtain 

W(tT)(b(r/)dr/ = ~ Hie(q)) + ~ Oj4~(')(r/j) + W ~ [ P . ( t l ) ] Z d r /  (12a) 
a j : l  j = l  a 

where 

142= i b Whj(r/)d11= fb Wl~(tl)dr/ p(2)(r/j)fbWl~(r/)(r/_r/j)dq (12b) 
a Pn(1) (r/j) 

Thus, (10) may be approximately integrated by neglecting the last term (error term) in (12a). 
If r is of degree not in excess of (2n -  1), (12a) is exact without the error term. There are 
n abscissae, namely r//(j-- 1, 2, ..., n), remaining to be determined. In the method of Newton-  
Cotes, all the abscissae t/j are equally spaced within the interval of integration, but Gauss 
showed that it would be advantageous to choose q.i differently. He has shown that if t/j's are 
chosen as roots of such an orthogonal polynomial P, (q) satisfying the following orthogonality 
conditions [1 1 1, 

f b = (I = O, . . . . .  n-- 1) (13) P,(r/) W (~l) r/l d~? 0 1 
a 

then G j= 0 and Hj reduces to 

Hj = Wl~ (r/) dr~ = WI/(r/) dr~. (14) 
a 

Another advantage of determining P,(r/) by the orthogonality condition (13) and defining 
r/j's as the zeros of P~ (r/) is minimization of error term of the corresponding quadrature formula. 
It is thus clear that Gaussian determination of P~ (77) and r/j's indeed plays a double roll, namely, 
it eliminates one half of the 2n terms of the right-hand side of (12a), thus enabling us to express 
the integral of a polynomial �9 (r/) of degree (2n-  1) exactly as a weighted mean of its n particular 
values ~(~j), and at the same time assures us that error committed by neglecting the error 
term will be a minimum. By neglecting the error term, an approximate evaluation of the integral 
is then obtained by the formula 

W(~I) ~b(~l) = Hjq)(~lj) . (15) 
a j = l  

In the previous analysis, so far we have assumed both limits of integration (a, b) to be finite 
numbers, however, by appropriate selection of the weighted function W(q), the theory and 
equation will continue to apply for infinite limits. 
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Solution for a Flat Plate 

This is a particular case of problems with f l=0 in (7). It can, however, be treated simpler as a 
separate problem; and in view of its importance, it will be considered in detail. In this case, we 
have i=0, Ue= U~, ~=x. We further modify the coordinate q and stream function ~ by a 
factor of 2 ~ so that the numerical table prepared by Howarth [2, 5] is at our disposal for heat 
transfer calculation. 

We let 

r/-- y ~ v ~  (16) 

and 
= (U~ xv)~f (x, q). (17) 

Hence, (6) becomes 

-O'(o) --[ f~ exp C- Pr f l  f d~) (18) 

in which f satisfies 

f ' "+�89 0 (19) 

with boundary conditions 

f = f ' = 0  at t /=0 ,  f ' = l  as r/--+oo. 

If one denotes the Reynolds number Rex by U~x/v and Nusselt number Nu by 
q~x/{k(Tw- T~)}, then 

Uu Re; ~ = - 0' (o). (20) 

Averaging the Nusselt number over the length L of the plate, we get 

N-u Re L ~ = - 20' (o) (21) 

where Re L = U| L/v. Equation (18) was originally integrated numerically by Pohlhausen [10]. 
In this section, we like to demonstrate how well and easily the application of (15) to evaluate (18) 
can be practically done. For that purpose, we write 

f0 exp ( -  2 -  fo dr /=  r/) exp mf, , (o}l  dr/ (22) 

Since 

f l fd~ = _ lnf"(q) 2 
" f " ( o ) "  

To evaluate (22) by using (15), we let 

f = uj (r/j) 
0 j = l  

where 

w(r/) = e - "  

and 

(23) 

(24) 

(tl j) exp Jr~j+ Pr f"  (~ "V1 

The orthogonal polynomial satisfying (13) with a=O, b= oo and W(t/)= e -~ is a Laguerre 
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polynomial defined in ref. [11] and can be written as: 

e . d n 
P"(t/) - n! dt/" (e-"t/") (26) 

and hence, Hj becomes 

__- ~ [p(1)(qj)] - 2. (27) /-/j 

It follows that (18) becomes 

- 0'(o) = [ f" (~  (28) 

Hi e "s [ f "  (t/j)] ,~ 
j = l  

in which the t/j 'S ( j  = 1, 2 . . . . .  n) are the roots of Laguerre polynomials. The values of qj together 
with the corresponding Hj are calculated by Salzer and Zucker [12]*. The results of f "(t/) 
calculated by Howarth are tabulated for t/= 0 (0.2) 8.8 in ref. [2] a n d f "  (t/j) may not be known 
to us directly from the table. However, its value may be obtained by means of Taylor's extra- 
polation formula 

with 

o0 
f(")(tlo) 

f ' ( t /J)  = Z (t/J-17o)"-: 
,=2 (n-Z)  ! 

f(3) = -2aa! f:g(2), f(4) = _�89 [ff(3)+f(1)f(2)] 

f(s) = _ �89 [ f f (4)+  2f(1)f(a)+ (f(2):)] 

(29) 

f (6 )=  1 [ff(~)+3f(1)f(4)+4f(2)f(3)] etc., 

where t/0 is the closest possible abscissa to t/j given in the table (t/0< t/i ). For large value of 
t/j (say t/j > 7), the asymptotic equation 

f "  (t/j)= 7 exp [ - �88  (30) 

with 7=0.231 and fl= 1.73 may be used for advantage to evaluate f"(t/j). Values of H a and 
f "  (t/j) for the corresponding t/j are listed in Table 1 for the six values of n shown. 

-0 ' (o)  calculated by means of (28) using n=1,  2, 3, 4, 5 and 15 are listed in Table 2 for 
Prandtl numbers ranging from 0.006 to 100. The results may be compared with the exact 
values available in the literature. 

It can be seen how well the lower orders of approximation represent the exact solution. For 
O. 1 < Pr < 10, four terms (n = 4) in (28) are sufficient if the desired accuracy does not exceed 2 ~o. 
Using 5 terms, the error is less than 0.7 ~o for 0.1 < Pr< 1.1. Equation (28) with 15 terms leads 
to surprisingly good results even to the fourth decimal place for 0.6 < Pr < 1.1, and for 0.006 < 
Pr < 0.5 the error is less than 0.3 ~o while for 1.1 < Pr < 15 the error is about 0.4 ~ .  The deviation 
becomes slightly large as Pr increases. The reason for this is that when Pr becomes large, 
thickness of the thermal boundary layer is thin and is only a small fraction of the momentum 
boundary layer thickness. Thus, the main contribution to the integral of (22) comes from the 
line integral along the real axis t/at the vicinity of the wall (q = 0). This phenomenon may also 
be clearly seen from (28). Although we have employed 15 terms in the calculation, only the 
first few terms containing small t/j contribute to the summation when Prandtl number becomes 
large. Thus, for large Prandtl numbers, a higher order approximation is required if a more 
accurate result is desired. 

* Their data are also reproduced in ref. ~11]. 
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TABLE 1 

Value of tl3 , H~ and f ' ( t l j  ) in the equation (28) and F(tli ) in the equation (31) for the calculation of Nusselt number* 

tl j Hj f "  (rl ~ ) F (q ~) 

(2 Dim. (Axi- 
stagnation) symmetrical) 

n = l  1 1 

0.58579 0.85355 n=2 3.41421, 0.14645 

n=3 

n=4  

n=5 

n=15 

0.41577 0.71109 
2.29428 0.27852 
6.28995 0.(1)10389 

0.32255 0.60315 
1.74576 0.35742 
4.53662 0.(1)38888 
9.39507 0.(3)53929 

0.26356 0.52176 
1.41340 0.39867 
3.59643 0.(1)75942 
7.08581 0.(2)36118 

12.64080 0.(4)23370 

0.(1)93308 0.21823 
0.49269 0.34221 
1.21560 0.26303 
2.26995 0.12643 
3.66762 0.(1)40207 
5.42534 0.(2)85637 
7,56592 0.(2)12124 

10.12023 0.(3)11167 
13,13029 0.(5)64599 
16.65441 0.(6)22263 
20.77648 0.(8)42274 
25.62389 0.(10)39219 
31.40752 0.(12)t4565 
38.53068 0.(15)14830 
48.02609 0.(19)16006 

0.32301 

0.33022 
0.11642 

0.33140 
0.23900 
0.(2) 12765 

0,33176 
0.28691 
0.(1)32276 
Eq. (30) 

0.33190 
0,30719 

"0.(1)98427 

Eq~(30) 

0.33205 
0.33096 
0.31600 
0.24145 
0.(1)91798 
0.(2)75676 

l 
Eq. (30) 

0.(3)16372 0.(3)12404 
0.(1)22141 0.(1)17273 
0,28311 0.23259 
1.46368 1,27702 
4.70899 4.30642 

11,56649 10.88359 
24.09730 23.06575 
45,04032 43.59847 
78.08613 76.16927 

128.28209 125.81624 
202.75360 199.64589 
312.09061 308.20675 
473.26244 468.47721 
717.74434 711.83672 

1122.53610 1115.14200 

* (a) t/j and Hj were originally calculated to twelve significant decimal figures. We have truncated them to five. 
(b) The number in the parentheses stands for the number of zeros between the decimal point and the first significant 
figure. 
(c) The following asymptotic equations for f(~) were used in the calculation of F01j) in (37) for large ~: 

fl=�89 f(~)= ~ +0.393 exp (-�89162162 -3 -6r  -5 +45U7 + ...) r >4.4 

e x p ( - ~  )(~ -6~-6+ . . . )  ~>4.4 f l= l  f(~)=~+0.645 1~2 1 -z 

Solution for Arbitrary Values of t~ 

In this section, we shall demonstrate that by the proposed method, one can also calculate the 
Nusselt number for/~ v~ 0, i.e. for boundary layers with longitudinal pressure gradient. To this 
end, applying Gauss-Laguerre quadrature, we write (6) as 

-if(o) = ~ Hj exp [~ i - e r  F(~j)] (31) 
j = l  

where 
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TABLE 2 

Comparison 
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ofresultsfor -O'(o)forflat plate 

n = l  n=2 n=3 n=4  n=5 n=15 Exact* 

0.006 0 . 3 6 7 9  0 . 1 6 7 9  0 . 1 0 8 1  0 . 0 8 0 6 8  0 .0 6 9 7 1  0 . 0 4 0 8 4  0.04073 

0 .01 0 . 3 6 8 0  0 . 1 6 8 4  0 . 1 0 9 5  0 . 0 8 3 2 5  0 .0 7 3 4 1  0 .0 5 1 6 1  0.05159 

0.1 0.3689 0 . 1 8 0 5  0 . 1 4 3 7  0.1395 0.1410 0.1393 0.1381 

0.5 0.3730 0 . 2 4 0 1  0 . 2 6 5 6  0.2583 0.2589 0.2593 0.2591 

0.6 0.3740 0 . 2 5 6 3  0 . 2 8 2 4  0.2773 0.2759 0.2769 0.2769 

0.7 0.3751 0 . 2 7 2 9  0 . 2 9 5 5  0.2948 0.2911 0.2927 0.2927 

0.8 0.3761 0 . 2 8 9 8  0 . 3 0 6 4  0.3109 0.3053 0,3069 0.3069 

0.9 0.3771 0 . 3 0 6 9  0 . 3 1 5 7  0.3254 0.3186 0.3200 0.3200 

1.0 0.3782 0 . 3 2 4 1  0 . 3 2 4 2  0.3385 0.3314 0.3320 0.3320 

1.1 0.3792 0 . 3 4 1 4  0 . 3 3 2 1  0,3502 0.3435 0.3434 0.3434 

7.0 0.4464 0 . 6 7 6 8  0 . 7 4 6 7  0.6395 0.6144 0.6471 0.6459 

10 0.4850 0 . 6 8 9 5  0 . 8 6 2 4  0.7691 0.7001 0.7289 0.7282 

15 0.5568 0 . 7 0 9 1  0 . 9 3 8 2  0.9522 0.8445 0.8305 0.8341 

50 1.4646 0 . 8 6 2 3  t.0250 1.2542 1,4359 1.2691 1.2472 

100 5.8312 1 . 1 4 0 1  1 , 1 3 2 2  1.3144 1,5436 1.5456 1.5718 

* The exact numerical results are obtained from the following references for the Prandtl numbers indicated. 

Pr from 0.6 to 15, Originally calculated by E. Pohlhausen [10] to three figures and recalculated by Merk [3] to 
four figures. 

Pr=0.1 and 0.5, from ref. [3]. 
Pr=0.006 and 0.01, from ref. [13]. 
Pr = 50 and 100, Calculated by us using the asymptotic solution given in ref. [3]. 

Equation (32) can not be integrated in its analytical form when fi r  Here, we propose to 
evaluate (32) by using Gauss-Legendre quadrature. Let's introduce a transformation: 

)~ = 2~-r/~ (33) 
r/j 

Therefore, 

= f ( ; ~ ) d ) ~ .  (34) 5-._1 
Comparing the integral 

f l  f ( z ) d z  
-1 

with (10), one finds a =  - 1, b =  1 and W(•)-- 1 and the orthogonal polynomial satisfying (13) 
under these conditions is the Legendre polynomial of degree m, (to avoid the confusion in the 
following analysis, we replace n in (13) by m) defined by 

1 d m 
Pro(Z) -- 2ram! dzm (Z2--1)  m (35) 
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and the corresponding weight coefficient H i reduces to the form 

2 
H, = (1 - )~)[P,(.')(Z~)] z ( 3 6 )  

in which Z~ are roots of the Legendre polynomials Pro(Z)- The Z~ and the corresponding values 
of H~ were calculated by Lowan, Davids and Levenson [-14] for m=2(1)16 to fifteen decimal 
places. (Their results will also be found in ref. [11]). For convenience, we reproduce their value 

TABLE 3 

Roots and weight coefficients of the Gaussian-Legendre quadrature formula to be used in (37) 

m=16 

0.98940 

0.94458 

0.86563 

0.75540 

0.61788 

0.45802 

0.28160 

0.095013 

_+)~ H~ 

0.027152 

0.062254 

0.095159 

0.12463 

0.14960 

0.16916 

0.18260 

0.18945 

for m=  16 in Table 3 to five significant decimal figures, since these data will be used in our 
numerical calculation later. Equation (32) can be re-written as 

~s ~ t/s ~ H I S ( ( 3  (37) F(rlj) = 5 H,f(zi)  = 
i=1 i= l  

with 

(i - rlj(Zi+ 1) 
2 

The value o f f  ((i) may not be known to us directly from the table sincefis usually tabulated for 
a discrete set of its abscissa. However, f (( i)  may be calculated by means of Taylor's extra- 
polation formula 

f(") ((o) (~,_ (o)" (38) 
f ( [ ' )  = T 

n=O r/. 

with 

f(3) (~o) = _fro)f(2)_ fl [1 - (f(1))2] 

f{4)((o) = _fro)f (3)_f t l ) f (2)+ 2fif(1)f(2) 

f(5) (~o) = _f{o) f(4) + 2 ( f i -  1 ) f o ) f  t3) + (2/3-1) (f~2))2 

f(6) ((o) = _f(o) f t5)+ (2fi - 3)f  c *}f(r 2 (3/7 - 2)f(2}f  ~3), etc. 

where (o is the closest possible abscissa to be given in the table ((o < (i). After substituting the 
known values o f f  go), fo)((o)  and f (2) ((o)into (38), the values o f f  ~"~ (r and f((i) may readily 
be obtained. When any (i becomes large, the asymptotic equation for f ( 0  may be used. If 
~/j is small, the following alternative formula may also be used for evaluating F(t/j), 

3 g f~"+2)(~ , (39) 
F(~/S) = qJ ,_-2" 0 (n+3) i  t/s 

with 
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f(2)(o)  = c f(3)(o) = - f l ,  f(4 ' (o)= 0 

f (~)(o) = cZ(2fi - 1), f(6)(o) = 2cfl(2- 3fi), etc. 

Numerical values of FOls) using (37) with m = 16 were calculated by us and listed in Table 1 
for f i= 1 (two-dimensional front stagnation point) and fi=�89 (axisymmetrical front stagnation 
point) along with the corresponding qs for n = 15. With F (t/s) known, - 0' (o) can be determined 
from (31) for any desired value of Prandtl number. The results are shown in Table 4. For the 

TABLE 4 

Comparison of results for - 0'(o) for fi = �89 and 1 

Pr 0.01 0.1 0.7 1 10 50 

~ Exact 0.07598 0.2195 0.4959 0.5704 1.3389 2.3533 

fl= 1 ~from (31) 0.07598 0.2195 0.4959 0.5704 1.3507 2.3654 
[ with n = 15 (+ .9 ~) ( + .6 ~) 

t Exact 0.07512 0.2132 0.4705 0.5389 1.2389 2.1607 

fl=�89 (31) 0.07512 0.2132 0.4705 0.5389 1.2544 2.1086 
t.with n=15 (+ 1.2~) ( -  2.4 ~) 

purpose of comparison, included are the exact numerical solutions computed by us using 
electronic computer. It appears that our equation (31) with n = 15 leads to satisfactory agreement 
with the exact value even to the fourth decimal place for Prandtl numbers ranging from 0.01 
to 1. The accuracy seems decreasing as Pr increases. The reason for this phenomena is explained 
in the previous section, and if a more accurate result is desired, the higher order terms in (31) 
are required. 

Concluding Remarks 

As has been demonstrated in the text, by applying the Gaussian quadratures, Nusselt number 
may be expressed explicitly in terms of the Prandtl number. A great advantage of the present 
approximation method is that no physical hypothesis is needed; the simplifications introduced 
are of mathematical nature. The calculations may be refined in a straightforward way by 
considering more terms in the quadrature formula to any desired degree of accuracy. It may 
be expected that successive refinements converge towards the exact solution. However, for 
large Prandtl number (say Pr > 10), its convergence is rather slow. The lower order approxima- 
tion (n = 4 or 5) will provide a rapid method of obtaining the approximate solution for engineer- 
ing heat transfer problems. 
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